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Shannon capacity - Introduction

Transmission over a noisy channel C:
Input alphabet: V=A{l...,n}
Output alphabet: U={1,...,m}
C : V — P(U) maps each input letter to a set of
possible output letters.

Goal ([Shannon '56]): A

What is the maximal rate of zero-error

transmission over a given noisy channel C ?
\. /




Single letter transmission over C

Define the characteristic graph of a channel C :
G = (V,E)where ijeE < C>i)NC(j)#0 .

The set S C V guarantees zero error <

S is an independent set of G.

OPT= «a(G) for a single use of C .




Strong graph powers - definition

LQ Can we benefit from sending longer words over C ? ]]

Define G*, the it strong graph power of G-
V(G") =V(G)"
(ug,...,u) # (v1,...,v,) are adjacent <=
for all ¢, either u; = v; or wv; € E(G).

When G is the characteristic graph of C,

w € E(G*) < u and v are confusable in C.




Strong graph powers - application

Q: Can we benefit from sending longer words over C ?
A: YES q
. OPT=a(G") for sending k-letter words via C .
Block-coding shows «a(G") > (a(G))" .

A strict inequality «(G"*) > (a(G))" is possible!

11, 14, 41, 44}
11, 23, 35, 42, 54}
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Shannon capacity - definition

The Shannon Capacity of G is defined to be:
c¢(G) = lim (ae(Gk))Uk — sup (@(Gﬁ;))lfﬂ':
Y k

k— 00

(G > a(GF)a(Gh = Flim = sup

c((@) 1s the effective alphabet-size of C when
sending zero-error transmission.

E.g., ifc(G) = 7, then fork > 1 we can send ~ 7"
k-letter words via C without danger of confusion.



Shannon capacity: some bounds

[Shannon ‘56]: a(G) < ¢(G) < v/ (G) . i)
Smallest graph unsettled by this was Cs.

( Motivated [Berge '60] to study perfect graphs;
WPGT proved by [Lovasz “72], SPGT by [CRST ‘02].)

[Haemers /8, *79]:. algebraic upper bounds.
[Lovasz “79]: ¢(G) < Y(G) (the Lovasz v func.),
giving ¢(Cs) = V5 .

¢(G) remains unknown even for simple and small
graphs, e.g. C; .



Shannon capacity: original bounds

= [Shannon 56]: a(G) < ¢(G) < x4 (G) .

By definition. " !

Similar to proving that ¢(G) < y(G): )
If  cliques cover the vertices of &, then G* can be
covered by " cliques. )

2 <
«%,4@

Cartesian product of cliques = clique ]




Shannon capacity: algebraic bound

Diagonal entries are non-zero: a;; #0 Vi€ [n]
Off diagonal entries «;; = 0 whenever (i,j) ¢ E
[Haemers /8, "79]:
If A represents GG over [, then ¢(G) < rankg(A). ]

. full k

[ independentsetof G =— A[l : I| = | "~...%[}
— a(G) < rankp(A)

Higher powers: by definition, A“* represents G*:
— a(G*) < rankp(A%*) = (rankp(A))"
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Where is ¢((G) attained?

Shannon’s X bound gives examples of graphs
where ¢(G) = a(G) : 1-letter words are optimal.

Lovasz’s ¢ function gives examples of graphs
where ¢(G) = /a(G?) : 2-letter words are optimal.

No known G with other finite optimal word-length.

rC_Dh: Can we approximate c(G) by a(G), . . ., a(G*) for )
some large finite £?

\. J

" A: No, not even after we witness any finite number of )
Improvements...

\. J
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Rate increases between powers

[Alon+L ‘06]: There can be any finite number of
rate increases at any arbitrary locations:

- | i
For every fixed by < ko < ... < kg and £ > 0 there is a
* 1 )
oraph G so that for all j, max a(G")* < ((_E(GLJ)*J)

/

=
L]

_ t<k; )
Nevertheless, we can Yo (@)
deduce some bound "
on a(G**1) given a(G"), Zii
using Ramsey Theory.
O (n™)
O(log n) | | | ok



Shannon capacity and Ramsey No.

The Ramsey number 7 (k. k) is the minimal integer 7 so that every
2-edge-coloring of the complete graph /', has a monochromatic /<.

Suppose «o(G) =5. Then a(G?) < 165 (!).
[ErdOs+McEliece+Taylor “/71]: A tight bound of:
L If a(G) =k, then o(G*) <r(k+1,k+1)—1. ]]

Proof: color the edges of an independent set of
(G* according to the disconnected coordinate.

J
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Sum of channels

2 senders combine separate channels, C; and (s :
Each letter can be sent from either of the 2 channels.
Letters from C; are never confused with those from Cs.

.. - Disjoint union of
Characteristic graph IS G + Gs. individual char. graphs

[Shannon ‘56]: ¢«(G + H) > ¢(G) + c¢(H) ,
and conjectured that (=) always holds.

4 1 ( ]
How can adding a separate Cq:
g channel C, increase the

/21| capacity by more than ¢(G>)? Co -

—

ZAN




The Shannon capacity of a union

[Alon "98] disproved Shannon’s conjecture:
Lﬂ G.H: c(G) <k, c(H) <k, o(G+H)> AQ(—)]]
Proof outline: &)

Suppose for some G = ([n], E): { p

in the 2" power

Ind. set {(ic,iz) : i € [n|} implies ¢(G
Such a G is a Ramsey graph!
Proof applies an algebraic (5 N L)
bound to a variant of the 4 ’ 2
Ramsey construction 3
oy [Frankl+Wilson ‘81].




Multiple channels & privileged users

[Alon+L "08]: The following stronger result holds:
(Fr;:)r any fixed ¢ and family F c 2, 3G4....,G; so t.ha.t.:\
VICIt], c() ;o Gi)is “large” if I contains some F' € F,

\imd is “small” otherwise.

%

E.g.,.F={F C|t]:|F|=k}ensures that:
Any k senders combined have a high capacity.
Any group of k£ — 1 senders has a low capacity.
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i Ramsey Theory revisited

= By-product: explicit construction for a Ramsey
graph with respect to “rainbow” sub-graphs:

(Fcu any (large) n and t < \/ “Uz];g”’ there is an expli(:it\‘

t-edge-coloring of K, so that every induced subgraph

on exp(O(v/lognloglogn)) vertices contains all ¢ colors.
\ ( (\/.n_r;{l}' Z - )) ))

—

Constructions

Ramsey J
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Index Coding - Problem Definition

[Birk+Kol ‘98],[Bar-Yossef+Birk+Jayram+Kol ‘06]:
Server broadcasts data to n receivers, R,..... R,,.
Input data: = € {0,1}".

Each R; is interested in x;, and knows some subset of
the remaining bits.

Goal: design a code of minimal word length, so that:
for every input word =, every R; will be able to recover
the bit x; (using his side-information).

R/'s side
information ~

. Dec |jo—
vefoy — ) | o

19



Motivation: Informed Source Coding

Content broadcast to c?.s.b‘ing clients:

Limited individual storage] Slow backward channel]
Clients inform server on known & required blocks.

Goal: broadcast a short stream, allowing each
client to recover its wanted data.




Index coding in terms of graphs

Define the (directed) side-information graph:
Vertexset: V ={1,...,n} .
(i.7) is an edge iff R; knows the value of z;.

An /ndex code of length ¢ for G is:
An encoding function: £ : {0,1}" — {0,1}¢ , Out-neighbors
Decoding functions: Dy,.... D, , / of R inG. J

so that Vi € [n] Vo € {0,1}": -.;(E(:I:),:I:|N9:(_i}) = ;.

LE(G) = minimum length of an index code for G.]]
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Index coding Examples

Note: For any graph G, 1 < /(G) < n. ]

Suppose every R; knows all the bits except ;:
Side-information graph is the complete graph K&, .
A linear index code of length 1:
E(x) =@z , Di(E(x),z|g,4) = E(x) (P x5) = a; .

i=1 i
— ((G) = 1. "

Similarly, if no 2, knows any of the bits:

. » Side-information graph is the edgeless graph.

Counting argument: code must contain 2" distinct words,
hence ((G) = n.

22



A linear index coding scheme

Set: A, :the adjacency matrix of G,
{ur,...,u,}: basis for rows(Aqs + I) over GF(2).

Encoding: given x € {0,1}", send (ui-x,.... u,-x).

Decoding:  ((A¢ +1)x), = x; + Z

jEN-I-
—> R; can reconstruct z; . '}
)

Altogether: /(G) < ranks(Ag + 1

Allows recovering ]

l (A + 1)z

Ag+1 1. i R; knows these
f—“\/ Liff F?; knows r; | bits by definition.
’ 23

.




Optimal linear index codes

Note: For any spanning sub-graph H C G, ((G) < ((H). ]

— [(G) < }}lil(l ranko( Ay + 1) =: minrk, ()
cG
[BBJK ‘06] showed:
minrks (&) is the size of the linear index code.

In many cases /() = minrky((G). « > eg., perfectgraphs,
acyclic graphs,

The main conjecture of [BBJK ‘06]: holes, anti-holes,..

Conj: Linear index coding is always optimal, ‘

l.e., ((G) = minrky(G) forany G .

A =

24



Beating the linear optimum

[L+Stav]: the conjecture of [BBJK ‘06] is false
In, essentially, the strongest possible way:

(For any € > 0 and (large) n, 3 G on n vertices so that: \

1. Any linear index code for G requires n' ¢ bits.

2. There exists a non-linear index code for ¢ using n° bits.

Qoreover, (& is undirected and can be constructed explicitl}njj

minrks (G) > n'=¢
(hardly improves trivial protocol
of sending the entire word ')

25



Index coding - proof sketch

IWANTED) G such that minrk,(()is “large”, and #(G)is “small”.

Need /(G) to be small regardless of minrks(G) ...
Use higher order fields: |

g 0 if i; does
./”\/' 110t KNOW 1’

Take A = (a;;) representing G over F: "'
Encode Az using [rankg(A) log, |F|| bits.
Decoding: a_'(Az); = z; + a;;' Z AijT;
JENG (i)
Generalizing 1111111']{2(G))—> 111i1‘11'kF(G)),
we have ( (G) < [minrkgs(G) log, [F|] )

26



Index coding - proof sketch

HNTE G such that minrks(G)is “large”, and minrk,(G) i s Sma”n A

Difficult to provide lower bounds on minrks(G)...

{ T~ ranks( Ay + 1) must
Use the Shannon capacity: be “large’ forv I ¢ G’J
minrks (G) > ¢(G) b
(G xG) >n «—lig.ig) i € [”JD
is an independent set

minrks (G x G) < minrky(G) minrks (G)
It follows that for every (G on n vertices,
minrks (G) minrky(G) > n ).
) i

Showing that minrks (ﬁ)
W|II imply that minrk, ()

|w I/\




Index coding - proof sketch

Such a ¢ is a Ramsey graph.

The construction of [Alon ‘98]: | “small” minrk,(G) )
for some large primes p # ¢ . | “small” minrk,(G) )

Use Lucas’ Theorem to extend this construction
to any distinct primes.

Choosing ¢ = 2 completes the proof. =

28



Beating linear codes over any field

We constructed graphs where /(') < minrks(G)
using linear codes over higher-order fields.

Q: Can {(G) beat any linear index coding scheme,
~ e, VF /(G) < minrkg(G)?

A: YES (a corollary of the previous Thm).

Take H = G + G for the previous G :

inrkg(H) > c(H) > \_}_T;)
J < Code concatenahon)
G)

T

29



Multiple round index coding

t > 1 rounds (each with its own input & setting):

R; is interested in the Gi....,Gy . side
¢t bit of each word. information graphs

(G, ...,Gy): minimal length of such an index code.
Multiple usage can improve the average rate!

Example:
1stusage: R; knows the bits {w; : j > i} | (1.C» are
- ransitive
2nd ysage: R; knows the bits {y;:J < i}  iournaments

In this case, /(G1) = ((G3) = n,
yet ((G,G5) =n + 1, largest possible gap!

30
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Some open problems L

e

Multiple round index coding: nequality
Recall that (G, Gy) < U(Gh) + ((Gy). " 'may be strict
How does lim /(G,....G)/k behave?
K00 N — e’
kE times
What is the expected value of f(g”_‘%) ?

Can minrks () be exponentially larger than ¢(G) ?

Generalized setting: multiple receivers may be
interested in the same bit.
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Thank you.
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