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 Underlying geometry: finite graph G=(V,E ) .

 Set of possible configurations:
(assignments of +/- spins to the vertices).

 Probability of a configuration  is given by 
the Gibbs distribution (no external field):

 Ferromagnetic with inverse-temperature   :
as   the measure   favors configurations 
with aligned neighboring spins.
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 MC sampler for the Gibbs distribution:

 Update each u V via an independent Poisson(1) clock, 

replacing it by a new spin   conditioned on V u .

 Ergodic reversible MC with stationary measure .

 How fast is the convergence to equilibrium?
 Measuring convergence in L2() : Spectral gap :

gap = 1 -
(where  = largest nontrivial eigenvalue of the kernel H ).

 Measuring convergence in L1 : Mixing time :
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 Setting: Ising model on the lattice (/n)d .
Belief: For some critical inverse-temperature  c :

 Low temperature ( > c ) :
gap-1 and tmix are exponential in the surface area.

 Critical temperature ( =c ) :
gap-1 and tmix are polynomial in the surface area.

 High temperatures:

1. Rapid mixing: gap-1=O(1) and tmix log n

2. Mixing occurs abruptly, i.e., there is cutoff.
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 Describes a sharp transition in the convergence 
of finite ergodic Markov chains to stationarity.

5

Steady convergence
it takes a while to reach 

distance ½ from , then a 
while longer to reach

distance ¼, etc.

Abrupt convergence
the distance from  quickly 

drops from 1 to 0
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 Suppose we run Glauber dynamics for the Ising
Model satisfying tmix  f(n) for some f(n) .

 Cutoff   some c0  0 so that:

 Must run the chain for at least 
 c0  f(n) steps to even reach 
distance  (1 - ) from .

 Running it any longer than 
that  is essentially redundant.

 Proofs usually require (and thus provide) a deep 
understanding of the chain (its reasons for mixing).

 Many natural chains are believed to have cutoff, yet 
proving cutoff can be extremely challenging.
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 Recall:

 The chain has cutoff if the following holds:

 That is, for any 0<a , <1 we have
.
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 No interactions: Uniform {±1}  updates on the n sites 

[the discrete-time analogue of the chain is the lazy 
random walk on the hypercube]

 The magnetization is a Markov Chain (analogous to 
the classical  “Ehrenfest‟s Urn” birth & death chain).

 The Coupon Collector approach:
whereas

 [Aldous ‟83]: lower bound is tight:
½ log n + O(1) time suffices!
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 Known:

 Low temperature:
gap-1  exp(c n) and tmix  exp(c n) for some c > 0 .

 High temperatures:
gap-1=O(1) and tmix log n

 Open: Polynomial gap-1 , tmix at the critical ?

 Static critical  already highly involved...

 Open: Cutoff at high temperatures?

 Cutoff unknown even in 1-dimension (Q. of Peres)…

 To this date, no proof of cutoff for any chain whose 
stationary distribution is not completely understood...
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1. Complete graph (Curie-Weiss model):

 Believed to predict the behavior of the Ising model 
on high-dimensional tori.

 Size of the system plays the role of surface-area.

2. Regular tree (Bethe lattice):

 Canonical example of a non-amenable graph 
(with boundary proportional to its volume).

 Height of tree plays the role of surface-area.
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 Rescaling :

 [Griffiths, Weng, Langer ‟66], [Ellis „87]),… :
For              : gap–1, tmix exponential in n.

 [Aizenman, Holley „84], [Bubley, Dyer „97]),… :
For              :  gap–1 = O(1) ,  tmix  log n..

 [Levin, Luczak, Peres „07], [Ding, L., Peres ‟09]: 
For              :  gap–1, tmix  n1/2

For              : cutoff :

Critical window around c is of order 

 Picture completely verified.
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 Theorem [Ding, L., Peres „09]:

 = 1 –  with 2n   :
Cutoff at with a window of 1/ . 
gap-1 = (1+o(1))/.
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 = 1   with =O(n–1/2) : 
gap-1, tmix  n1/2 and there is no cutoff.

 = 1 +  with 2n   : 

 is the unique positive root of .

There is no cutoff.
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 Key element in the analysis:
By the complete symmetry, the magnetization is in 
fact a birth-and-death Markov Chain.

 Its mixing governs the mixing of the full dynamics.

 Proof involves a
delicate analysis of
certain hitting times
to establish the precise
point of reaching the 
“center of mass”.
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Stationary distribution of the magnetization 
chain for the dynamics on n = 500 vertices. 



 Potts model:                 (assigning colors to the sites)

 [Ellis ‟87]: Mean-Field Potts has a phase transition in 
the structure of the  around :
 Disordered phase for  < c : Each of the q spins appears 

roughly the same # of times.

 Ordered phase for  > c : One of the spins dominates.

 [Gore, Jerrum ‟96]: Mixing is exponentially slow at 
=c even for (faster) Swendsen-Wang dynamics…

 No power-law of gap-1, tmix at criticality !?!
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 [Cuff, Ding, L., Louidor,  Peres, Sly]: confirm 
the picture w.r.t. a new critical point m < c !

 The smallest  such that 

has a non-trivial root in .

 Analogous behavior to Ising around m, e.g.:

 Rapid mixing (log n) with cutoff at  < m .

 Power law at criticality: gap-1, tmix  n1/3 for  = m .

 Critical window has order n–2/3.

 Exp. mixing, yet fast “essential mixing” in (m , c).
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2 746 Rapid mixing with cutoff 

Power law mixing ( )/
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Between (m , c):
Exponential mixing, yet
fast “essential mixing” 
with cutoff.

2 773 Exponential mixing. :
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 Underlying graph = b-ary tree of height h .

  has a constructive representation (free boundary):

 Assign a uniform spin to the root

 Scan the tree top to bottom: Every site inherits the spin of 
its parent with probability                        and mutates o/w.

 Two critical temperatures:

1. :Uniqueness threshold (does the effect of a 
plus boundary on the root vanish as h   ).

2. : Purity threshold (does the effect of a 
“typical” boundary on the root vanish as h   ).

 c  coincides with critical spin-glass parameter.
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 c is the critical mixing parameter :

 [Kenyon, Mossel, Peres ‟01], [Berger, Kenyon, 
Mossel, Peres ‟05]: Under free boundary:
 For                  :        gap–1   = O(1) , tmix  h

 For                  : log(gap–1)  h

 At criticality: No upper bound; shown that gap–1 is at 
least linear in h and conjectured that this is tight.

 [Martinelli, Sinclair, Weitz ‟04]:
 Under all-plus BC: gap–1 = O(1), tmix  h for all  >0 .

 What is the behavior at the critical c ?
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 Theorem [Ding, L., Peres „09]:

 (first geometry other than the complete graph 
where power-law mixing at criticality is verified)
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Fix b  2 and let c = arctanh(b–1/2) be the critical inverse-
temperature for the Ising model on the b-ary tree of height h. 
There exist C, c1, c2 > 0 independent of b such that :

1. For any boundary condition  :
gap-1 , tmix = O( hC ) .

2. In the free boundary case:
gap-1  c1 h2  , tmix  c2 h3 .



 Use block dynamics [Martinelli ‟97]
to form a recursion on the tree:

 Reduces to estimating a quantity that, in the free 
boundary case, corresponds to a reconstruction-type 
result of [Pemantle, Peres „05] (“propagate a spin at 
the root down to level   , then reconstruct it back”).

 In our case: we have , an arbitrary boundary 

condition (greatly complicates the proof)...

 Still open: Is there cutoff for   c ?
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 Theorem [L., Sly]:

 Analogous result holds for any dimension d ≥ 1 .
[e.g., for d = 1 there is cutoff at                                

for any temperature].
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Let be the critical inverse-temperature
for the Ising model on 2 . Then the continuous-time
Glauber dynamics for the Ising model on (/n)2 with
periodic boundary conditions at 0   < c has cutoff at
(1/l) log n , where l is the spectral gap of the dynamics

on the infinite volume lattice.
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 Main result hinges on an L1-L2 reduction, enabling 
the application of log-Sobolev inequalities.

 Generic method that gives further results on:
 Arbitrary external field and non-uniform interactions.

 Boundary conditions (including free, all-plus, mixed).

 Other spin system models:
 Anti-ferromagnetic Ising

 Gas Hard-core

 Potts (ferromagnetic /anti-ferromagnetic)

 Coloring

 Spin-glass

 Other lattices (e.g., triangular, graph products).
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