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ISing model

reometry: finite graph G=(V,F ) .

igurations: (= {+1}"
pins to the vertices).

signments of
vability of a configuration 0<(2 is given by

s1bbs distribution (no external field):

- )
(0) = 750 B, 0@y

= Ferromagnetic with inverse-temperature (3 :
as 3 7 the measure y favors configurations

ith aligned neighboring spins.




¢ reversible MC with stationary measure .

ast is the convergence to equilibrium?
uring convergence in L*(u) : Spectral gap :

= gap=1-X
(where X = largest nontrivial eigenvalue of the kernel H ).

‘= Measuring convergence in L' : Mixing time :

t . (e)=inf t: maxHH o, —pf <

TV_



seneral (believed) picture for
Glauber dynamics

model on the lattice (Z/nZ)".
ritical inverse-temperature 3, :

perature B.):
and ¢, .. are exponential in the surface area.

£ )

cal temperature (8= 03, ) :
tand ¢, .. are polynomial in the surface area.

of emperatures:

[J
@,

1. Rpid mixing: gap'=0(1) and ¢_; =< log n

2. Mixing occurs abruptly, i.e., there is cutoff.




1e Cutoff Phenomenon

Describes a sharp transition in the convergence
of finite ergodic Markov chains to stationarity.

Steady convergence Abrupt convergence
it takes a while to reach the distance from r quickly
distance V2 from r, then a drops from 1 to 0

while longer to reach
distance Y4, etc.
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dihe importance of cutoff

Suppose we run Glauber dynamics for the Ising
Model satistying ¢ .. < f(n) for some f(n) .

Cutoff <> 3 some ¢, > 0 so that:

= Must run the chain for at least
~ ¢, - f(n) steps to even reach
distance (1-¢) from .

(co—o(1)) f(n)

= Running it any longer than
that is essentially redundant.

Proofs usually require (and thus provide) a deep
understanding of the chain (its reasons for mixing).

Many natural chains are believed to have cutoff, yet

prwcan be extremely challenging.



sutoff: formal definition

_MHTV .
QMA—VAL

hain has cutof;

i ()
(1-¢)

following holds:

=1 foranyO<e<l1.

mix

That i orany0<oz,6<1wehave

tix (@) = A+ 0(1)) £, (5) .




Cutoff example: Glauber
dynamics for Ising at 3 =0

magnetization is a Markov Chain (analogous to
classical “Ehrenfest’s Urn” birth & death chain).

> Coupon Collector approach:
t (e) < logn-+c , whereas

\ D) > L logn — ¢! .

= [Aldous ‘83]: lower bound is tight:

% log n + O(1) time suffices!




2icture for Glauber dynamics
Oh the square lattice (Z/nZ)*

CEYD
G.<5.

1t

mix

exp > exp(cn) for some ¢ > 0.

oh fémperatures: .
1=0(1) and ¢, < log n
Polynomial gap™, ¢ .. at the critical 3 =2, ?

ic critical i already highly involved...

1X

m Ope

= Cutoff unknown even in 1-dimension (Q. of Peres)...

: Cutoff at high temperatures?

~ = To this date, no proof of cutoff for any chain whose
lonary distribution is not completely understood...




Sing on other geometries

aph (Curie-Weiss model):
ict the behavior of the Ising model

nNn-Aalil C tOI‘i.

ize of the syste-m blays the role of surface-area.

ar tree (Bethe lattice):

nonical example of a non-amenable graph
vith boundary proportional to its volume).

Height of tree plays the role of surface-area.
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o) xexp (8/m._ o)o(u)
r, Langer "66], [Ellis ‘87]),... :
. exponential in n.

34], [Bubley, Dyer ‘97)),... :
0(1) ’ tmix ~ lOg n.'

in, Luczak, Peres “07], [Ding, L., Peres "09]:
(G=l Jeap ', .. = nl/?
(2)

Critical window around §3, is of order i

| . A
For o<1 .CutOff - tmix T 2(1-8)

e completely verified.

11




e Curie Weiss model:
omplete picture

, L., Peres “09]:
B=1-06with 6?n — «:
Cutoffat +log(6°n) with a window of 1/6 .
L= 0oy

B =1+ swith 6=0(n1?) :

=~ n!/2 and there is no cutoff.

-

X

ﬁ—1—|—6W1th52n—>oo:

o B exp|Z f log = ( )d:c] where
o tanh(8x) — z

¢ is the unique positive root of g(z) =

. 1— ztanh '
‘ -\Qere is no cutoff. enhe)




Curie-Weiss model:

(mean-field Ising model)
Scalingwindow in the gap/mixing-time evolution




Viean field Ising model (ctd.)

= Key element in the analysis:
By the complete symmetry, the magnetization is in

fact a birth-and-death Markov Chain.
= Its mixing governs the mixing of the full dynamics.

=@ Proof involves a
delicate analysis of
certain hitting times
to establish the precise
point of reaching the
“center of mass”.

Stationary distribution of the magnetization

\ chain for the dynamics on n = 500 vertices.
14



Same picture for the

lq]" (assigning colors to the sites)

(/6 eXp _/62:1,@/61*7 {o(z iOr(y)}

red phase for 3 < (3.: Each of the g spins appears
ly the same # of times.

phase for 3 > (3, : One of the spins dominates.

|Gore, Jerrum "96]: Mixing is exponentially slow at
B=p_.even for (faster) Swendsen-Wang dynamics...

& Nwr—law of gap, ¢, at criticality !?!
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Vlean-field Potts model

Louidor, Peres, Sly]: confirm
. a new critical point 3, < (. !
- o
 smallest 3 such that g(x) = €
a non-trivial root in (£,1] .

ogous behavior to sing around (3, e.g.:

oid mixing (log n) with cutoff at 3 < 3, .
= Critical window has order n /3,
= Exp. mixing, yet fast “essential mixing” in (3, , 5.).

er law at criticality: gap?, t . =< nl/?for 8 = B

— X
eﬁx + (q _1)e:8(1_x)/(q_1)
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Viean-field Potts model, g=3

B8 < B =~ 2.746 :Rapid mixing with cutoff

8 =3 :Power law mixing (n"°)

Between (3., , 5.):
Exponential mixing, yet
fast “essential mixing”
with cutoff.

B = B ~ 2.773 :Exponential mixing "




5ing on the Bethe lattice

aph = b-ary tree of height £ .
tive representation (free boundary):

5sign ¢ uniform st to the root

1 the tree top to botto m: Every site inherits the spin of
arent with probability £ (14 tanh 3) and mutates o/w.

ritical temperatures:

1. ;= arctanh(1/b) :Uniqueness threshold (does the effect of a
plus boundary on the root vanish as h — o0 ).

~ 2. (= arctanh(1/V'b) : Purity threshold (does the effect of a
“typical” boundary on the root vanish as h — o0 ).

Becoincides with critical spin-glass parameter.



slauber for Ising on trees

mixing parameter :

eres '01], [Berger, Kenyon,
der free boundary:
o) ,t..=<h

) Ymix

, Peres "05]:
B<pB, :  gap
L B> 0, :log(gap™) =<h

: ticality: No upper bound; shown that gap ! is at
inear in ~ and conjectured that this is tight.

o]li, Sinclair, Weitz "04]:
= Under all-plus BC: gap ' = O(1), £,
‘What is the behavior at the critical 3, ?

=~ h forall 3 >0.
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for Ising on critical trees

ing, L., Peres “09]:

b > 2 and let 3, = arctanh(b'/?) be the critical inverse-
erature for the Ising model on the b-ary tree of height .
ere exist C, ¢;, ¢, > 0 independent of b such that :

1. For any boundary condltlon G

gap e O( hC)

\ 2. In the free boundary case:

gap! > ¢, W > ¢y P .

) le

'@ (first geometry other than the complete graph
_where power-law mixing at criticality is verified)
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Mixing on critical trees (ctd.)
Main ingredients in the proof

Use block dynamics [Martinelli "97]
to form a recursion on the tree:

mf{gaph} > —mf{gap 1% mf{gap '} |
Reduces to estlmatmg a quant1ty that, in the free
boundary case, corresponds to a reconstruction-type

result of [Pemantle, Peres “05] (“propagate a spin at
the root down to level /, then reconstruct it back”).

In our case: we have 7, an arbitrary boundary
condition (greatly complicates the proof)...

Still open: Is there cutoftf for 3 < 5.7
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progress: Ising on lattices

Sly]:

Let 8 = 2log(1+ JE ) be the critical inverse-temperature
r the Ising model on Z* . Then the continuous-time

Glauber dynamics for the Ising model on (Z/nZ)? with
eriodic boundary conditions at 0 < g < 3, has cutoff at
/) log n, where ) is the spectral gap of the dynamics

on the infinite volume lattice.

h ~
= Analogous result holds for any dimension d>1.

le.g., for d = 1 there is cutoff at
for any temperature].

\‘\

log n

2(1-ta h(Zﬁ
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Recent progress on lattices (ctd.)

inges on an L!-L? reduction, enabling
of log-Sobolev inequalities.

methoc ojves further results on:
pitrary external field and non-uniform interactions.
dary conditions (including free, all-plus, mixed).
er spin system models:
nti-ferromagnetic Ising
o Gas Hard-core
a Potts (ferromagnetic /anti-ferromagnetic)
o Coloring
o Spin-glass
lattices (e.g., triangular, graph products).
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